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In order to explain the curved outline of some polymer crystals, we start from a slightly modified Frank's 
system of equations describing nucleation-controlled crystal growth. But we give an alternative and 
completely new interpretation of these equations with a view to applying them to the description of normal 
growth of crystals with rough surfaces. We show first that Mansfield's approximate solution of such 
equations is not exact, does not satisfy absorbing boundary conditions and does not depend on the rate 
of motion of these boundaries. Because that solution describes the facets of a crystal in terms of arcs of 
the s a m e  ellipse, it cannot be used to describe the curvature of 2 0 0 faces of those crystals of large elongation 
ratio which clearly are not parts of a single ellipse. The most puzzling feature of Mansfield's proposal is, 
however, that pronounced curvature is obtained solely if the mean distance between steps is assumed to 
be of the same order of magnitude as the width of a single stem. In such an eventuality, the use of the 
concept of nucleation-controlled growth becomes meaningless. 

We propose, therefore, a completely new interpretation of Frank's equations, which allows us to use 
these equations to describe nucleation-controlled growth. Then these equations appear as the mathematical 
formulation of a model that mediates between the approach of Seto and Frank, and that of 
Gilmer and Sadler. Detailed analysis of the experimental data, mostly those of Labaig and Bassett, shows 
that the outline of crystals with curved habit is neither elliptic nor made of elliptical arcs. We provide new 
and exact solutions of our generalized equations with generalized boundary conditions. These solutions 
account well for the experimental data. In some cases they may be approximated by Mansfield's solution 
(despite the fact that the change of curvature along the facets differs from that actually observed) or by 
the solution found independently by Toda and us (33th IUPAC Polymer Symposium at Montreal), despite 
the fact that it is unusual that near the tips of the crystals the outline of a crystal is well approximated by 
straight segments. The most important claim is, however, that our model appears as a bridge between the 
model of nucleation-controlled growth and that of normal growth of rough surfaces. 

(Keywords : crystal morphology; crystal growth; modelling; polyethylene) 

I N T R O D U C T I O N  because the experimental results show first the internal 

Morphologists have reported a large variety of crystal regularity of the crystals and secondly a continuous 
shapes. In this paper we deal principally with poly- change from straight to rounded edges. 
ethylene crystals for which a large amount  of data about Moreover,  in the nucleation theory the predicted shape 
the kinetics of crystallization and about  the internal of the crystal relies solely on Frank 's  model 5 of nucleation 
structure areavailable.  As shown byTakamizawa  1, when and not on the various assumptions about  zippering, 
crystallized from octanol solution, polyethylene crystals regime, reptation, persistence length, lattice strain effects, 
may have various morphologies ranging from lozenge to etc., which constitute the theories of Hoffman and his 
lanceolated shape. From the very beginning it was coworkers. Symmetrically, in Sadler's approach,  the 
proposed by Lauritzen and Hoffman 2 and Price 3 that shape of the crystal depends solely on the theory of 
the growth of polyethylene lamellae is nucleation- growth of the two-dimensional (2D) crystal 6 with rough 

surface and not on the so-called pinning model v. controlled. However, in 1983 this premise was disputed 
by Sadler 4. The disagreement arises from a comparison Our  aim in this communication, when solving the 
of the various morphologies observed, problem of crystal shape, is to differentiate the concepts 

In the current literature it appears that many people that are significant (for solving the problem of crystal 
think that they are faced with an alternative; either shape) from the tentative estimation of the physical 
adopt  the Hoffman-Laur i tzen  theory or choose Sadler's parameters involved and to construct a unified model 
approach.  We intend to show that, in terms of the that mediates between Frank 's  and Sadler's approaches. 
ultimate truth, a dichotomy of this sort has little meaning, We will also explain all the various possible morphologies 

of polyethylene crystals. 
* To whom cor respondence  should be addressed However, in our discussion on the shape of crystals, 
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Table 1 

(a) Models by Hoffman and his coworkers 2'12-15 

Assumptions Remarks 

( 1 ) Frank's model Discussed in this work 
(2) Zippering process of the molecule in a nucleus 2'12 Model not valid at high T s'9 
(3) Absorption 13 (qt factor) There exist other models for limitation of fold length s 

(4) Increase 13 of ~r e with T 

(5) Decrease 13 ofae with T 
(6) Persistence length 14 This length does not exist at all 1° 
(7) Regimes transition14 No regime transitions 11 

(8) Serrated surfaces ts Discussed in this paper 

(b) Models by Sadler and Gilmer 6'7 

(1) Growth of 2D crystals with SOS restriction Discussed in this work 
(2) Pinning model Connectivity of the macromolecules? (numerous papers of various authors). Tapered 

edges ? Bassett 

, . /  
/ a 

Irreversible Continuous drift Annihi lotion 
attochment 

L k small gy==2J~/ 
O. Ipm "" 

x 

Figurel (a)Growthofa2DcrystalaccordingtoFrankS.(b)Inthe ( r=O and / = 0 )  are not taken into account. (c) The result 
analytical solution, the values of r and l are of the same order of of a simulation (circles) by Mansfield is of the growth of a crystal 
magnitude everywhere. This is because the conditions at the boundaries (g/h = 2 ) and the elliptic profile proposed by Mansfield 1 v 

we are solely c o n c e r n e d  wi th  F r a n k ' s  m o d e l  a n d  the t e rm) ,  p r o d u c t i o n  (i t e r m )  a n d  a n n i h i l a t i o n  ( - 2 g l r  
m o d e l  of  g rowth  of 2 D  crystals  with so l id -on-so l id  ( S O S )  t e rm ) : 
res t r ic t ion.  All  o the r  po in t s  are i r re levan t  (see Table 1). ~I/Ot = g t31/dx + (i - 2glr) (1)  
It  is s h o w n  elsewhere 16 tha t  it is very un l ike ly  tha t  the 
shape  of  the crys ta l  m a y  resul t  f rom free-energy m i n i m i z -  Or/Ot = - g  Or/~x + (i - 2glr)  (2)  

a t i on  or  f rom the  effects of  t h e r m a l  ( a n d  c o n c e n t r a t i o n )  The  s lope of the crys ta l  facet resul ts  f rom the  exis tence 
gradients ,  of  s teps : 

F R A N K ' S  M O D E L  Oy/Ox = b(l  - r) (3)  

The  ra te  of  a d v a n c e  of the facet is due  to the m o v e m e n t  
In  F r a n k ' s  m o d e l  5 left a n d  r ight  steps r u n  a l o n g  a crystal  of  steps : 
face (Figure 1). The  local  v a r i a t i o n  of the n u m b e r  of  left 
( r igh t )  steps is due  to c o n v e c t i o n  (g ~l/Ox), ( - g  Or/Ox) ~y/~t  = gb(l  + r) (4)  
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At the left (right)end of the substrate: to be very similar and as seen by the simulation the 
chosen conditions at the boundaries, which move at a 

r = 0  ( l=0)  rate h, are of little importance. (Nearly) identical profiles 
For fixed length of the substrate the profile of the crystal were obtained for different values of the ratio g/h.  
is essentially fiat. These results are important. They tend to minimize 

the role of the boundary conditions (see Appendix 3). 
They indicate also that Frank's equations, which are 

MANSFIELD'S ANALYTICAL WORK intended to describe a nucleation-controlled growth, may 

In his analytical work, Mansfield ~7 chose to replace also for particular values of the parameters i and g 
Frank's equations (1)and (2)by" describe another mode of growth, which, however, 

cannot be taken as the normal growth of a rough surface 
i - 291r = 0 (5) without a complete revision, at least, of the interpretation 

That is to say (see Appendix 1) he chose to neglect the of Frank's equations. 
time dependence of the density of left and right steps This may help us to reach our final goal, a unified 

model that mediates between Frank's and Gilmer and (terms of Or/~t and 81/8t) and the effect on this density 
of the movement of steps (terms 9 dI /Sx and -O 8r/Sx) .  Sadler's approaches. Unfortunately these results were 
However, the modification by these terms of the balance used by Hoffman and Miller to disparage Sadler's work. 
between production and annihilation of steps is the 
major idea behind Frank's approach. He evidently COMPARISON WITH EXPERIMENT 
conserves equations (4) and (5), and without considering 
any boundary conditions he exhibits a particular solution We now have to examine Hoffman and Miller's con- 
of the system of equations, which has been modified in tention 15 that real crystals have an elliptic outline. A 
this way. This solution is : great variety of shapes are known by morphologists, but 

here the discussion is limited to the case of polyethylene, 
y = b(2gi) l /2( t  2 - -  x 2 / g 2 )  1/2 (6) for which extensive data are available. 

To avoid misunderstanding of the result given by Polyethylene crystals with four 1 1 0 sectors limited by 
Mansfield, it is important to write his solution in the more or less straight facets and two 2 0 0 sectors limited 
form given in equation (6). If it is simply said that bycurvededgesarekn°wnt°gr°wfr°mxylene'°ctan°l~' 
Mansfield predicts that the 2 0 0 facets of a polyethylene dodecanol 2°, tetradecanol ~9, hexadecanol, ethyl capro- 
crystal are elliptical arcs (as shown by equation (44M) ate x9, hexyl acetate 2~ and paraffinic solvents 19. In a few 
of Mansfield'7), it does not appear that the outline cases, detailed morphological observations show that at 
calculated by Mansfield comprises two arcs of the same least a part of the curvature occurs very likely during the 
ellipse (see Appendix 2). The shape of the crystals preparation of the sample for electron microscopy 
observed by Labaig, Bassett et al. (and others) may (EM)22. But this is not the case for the crystals of Lotz 
readily be approximated by drawing two arcs of two and Wittman 23, for Khoury's crystal 2° and for the 
different ellipses, but differs widely from any profile lenticular crystals grown from solution byTakamizawa a, 
obtained by considering two arcs of the same ellipse. This Keith 24 and Nagai 25. 
remark holds in the usual case where the crystal has the The unequal curvature of the two 2 00 edges of the 
shape of a laurel leaf (a very common situation according crystal of Figure 2, grown from hexadecano121, shows 
to Labaig 2~ ). the importance of the deformation of the lamellae during 

As expected, this function does not satisfy Frank's its preparation for EM. For crystals that are diamond- 
equations. Moreover, nowhere (except at x = 9t (or shaped, it is not sufficient to measure the bulge of the 

200 faces to prove that the 200 sectors are actually 
x = - 9 t ) )  do we get: limited by two arcs of the same ellipse. The edges of the 

l = 0 (or r = 0) lanceolated crystal grown from solution 1'24'25 or from 
the melt by Bassett et al. 26 and Labaig 27 are definitely despite the fact that Mansfield's intention is to find a 
not elliptic. profile that satisfies these conditions at: 

Another way to test if crystals are limited by arcs of 
x = ht (or x = - h t )  h < 9 ellipses is to compare the slope of the edge d x / d y  at the 

that is to say, at the extremities of the substrate, which tip of the crystal and the elongation ratio (the ratio of 
are assumed to move in the two opposite directions at half the chord to the bulge of the curved edge). Figure 3 
a rate h. The rate h, which is the additional physical shows the result of such a comparison. A large majority 

of the data are due to the pioneering work of Labaig, parameter that Mansfield intends to introduce, does not 
appear in its 'analytical solution' (6) (see Appendix 2). 

We communicated these different comments to Pro- 
fessor Mansfield at the 198th ACS Meeting and he has 
since published very interesting results on his computer ~ ~ _ .  ~ ,  
simulations 18. By simulation Mansfield obtains a profile / i  ""  - 
that displays a pronounced curvature. The mean distance 1_ . . . . . . .  
between successive niches is a few times larger than the . -  
width of a single stem. Clearly the surface is rough and 
its growth cannot be described by a nucleation mechanism 
despite the fact that Frank's equations are intended to 
describe a nucleation process. Figure 2 Representation of a crystal grown from a solution of PE in 

In Figure 1, Mansfield's solution is compared with his hexadecanol (courtesy of M. Dosi6re 21 ). As a result of mechanical 
analytical solution. The profile of the crystal face is found deformation, the two opposite 2 0 0 ' facets '  have unequal curvature 
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I Y the limitation of fold length; and 
(iii) to the compatibility between the observation of 

l,a __x curved facets and Lauritzen's assumption about the 
existence of regime I and of a regime I-regime II 

.= 28 - : transition. 
I I 

' One of us z2 has previously disputed in detail these 
various points, but we now have to reanalyse these 

I z -  / assumptions in the framework of the study of a crystal 
~ i ~  \ o o with curved edges. 

I I. .. o o (i) According to Hoffman and Miller, the curved edges 
o of polyethylene crystals represent a steady-state profile 

Io o of 2 0 0 subsidiary surfaces formed under regime II whose 
O o length along the b axis is controlled by planar 1 1 0 

9 o dominant facets growing either in regime I or in regime 
II. According to them, there is no longer any nucleation 

S o barrier to form niches on stepped { 2 0 0} faces serrated 
"0 o o at a molecular level. A free-energy barrier is still taken 

~ 7  ® to exist because of lattice strain due to the expansion of O 

_0 the lattice to accommodate folds. ¢ 
6 t,lO 

This free-energy barrier sas replaces the lateral surface 
0% .~ free energy 2bla, in the expression of i and also limits the 

5 ~ "v~ o kabaig z7 
• Basset et al z6 value ofg. This modifies the value of the distance between 

~o_ , 1o.~o / /  = Keith z4 the niches L k = (2g/i) 1/2. From the Hoffman and Miller 
4 .  y + K h ° u r y 2 0  estimation of the ratio g 2 o o / G 2 o o  (which is of the order 

x Lotz and Wittman 23 
3 * Nagoi25 of magnitude of 2), the value of L k is approximated to 

. Organand Keller 19 be four times the width of a single stem. 
• Yakamizawal This is another confirmation of our remark about 2 

o I z 3 4 5 6 7 8 9 IO Mansfield's calculation 17" the mechanism of crystalliz- 
Coto(o/z) ation must be at the borderline of nucleation-controlled 

growth. 
Figure 3 Comparison between the elongation ratio B/A and the (ii) However, in Hoffman and Miller's view, we no 
maximum of the slope Ox/Oy of the edge of all the crystal on which 
we make precise measurements (most of them are from Labaig, the longer have nucleation at all. The replacement in the 
others from the quoted references). The hatched area shows all the expression for i of 2bla by sas modifies the familiar 
possible values predicted for an arc of an ellipse, the domain defined diagram relative to the zippering process. The graph of 
by the inequality B/A > 2 cot (0/2). The straight line denoted 'lozenge' Figure 4 gives the free energy of adding v stems to a 2 0 0 
corresponds to a lozenge-shaped crystal (with any possible value of 
the apex angle) (see text of 'Epilogue') 

Hoffman Miller (no nucleation barrier) 

and others were measured on crystals prepared by Organ ZX*v = - POoh o cr e - vf(L ) 
and Keller 19, Bassett et al. 26, Lotz and Wittman 23 and 
others. In the same graph, the shaded area corresponds 6 
to all possible situations corresponding to elliptic crystals. 
The figure expresses mathematically the clearly seen ~ - - ~  I ~ ) [  
morphological properties of the lanceolated crystals of ao , ^ , ,  
high elongation ratio. The radius of curvature of the edge ~ , / ' "  , ' "  -0" 

of the crystal increases when we go from the centre to 
the tips of the crystal, and this is definitive proof that 
this non-elliptic edge is even not made of arcs of an ellipse, v - - - - -  

I 2 3 4 5 
k I I I I I 

H O F F M A N  AND MILLER'S M O D E L  zXqbv 6 x ~ x ~  

Disregarding the fact that the curved edges of poly- 
ethylene crystals, when measurable with precision, are 

A definitely not elliptic, we now have to discuss Hoffman ~ " - ~ " " ~  ,a 
and Miller's claim 15 that the observations of curved 8 " ~ ' - ~ " ~  A 
habits have been given an explanation by a development 8 ~ " - - - " ' * - . ~ " ~  ,4 
of Hoffman and Lauritzen's theory. 

The controversy does not pertain to Frank's model, B ~ , . . . - " - - ~  
which is solely a constituent part of Hoffman and 8 
Lauritzen's approach, but: 

(i) to the values of i, g, and the nature of the F i g u r e 4  Serrated surface a c c o r d i n g  to  Hoffman and Miller  15, and 
free-energy change on formation of a nucleus of fixed length as a 

nucleation barrier; function of the number  of stems. In the notation of ref. 15 (and by 
(ii) to the zippering p r o c e s s ,  w h i c h  in Hoffman's view using L in place of l to designate the thickness of the lamellae) 

describes the formation of a stable nucleus, and explains f (L)  = 2aoba e + 2 x / 2 b o a  s - aoboL(AG) 
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o The approach proposed by Sadler to replace the theory 
of nucleation control may be divided into two parts" 

I I - / -  I - - "  The first one 7 is related to Sadler's concept of pinning. 
_ / -  As a molecule attaches itself, it does not necessarily 

choose a conformation that is suitable for a later stage 
of growth. It forms chain folds and loops, which 

_-- constitute pinned surface sites. Therefore, growth tends 
-2 '= to get frustrated. The simple two-dimensional version of 

e=_ this model, the row model, allows the rate constants and 
value of the fold length to be calculated. In such a model, 

o ~ -3~- ~ ~ r / . . . m  ~ a row of stems is cut out of the crystal perpendicular to 
" ] ~ ~ / I - / ~  the growth face, neglecting all lateral correlations. This 

~ _ ~  problem is completely disconnected from the second topic 
a n d i s n o t  

[ I  ~ The sec°nd part °f  Sadler's appr°ach6 c°ncerns the 
problem of the overall external shape of polymer lamellae 

t i and is now scrutinized and compared to Frank's 
124 Iz6 Iz8 13o 13a approach. 

r(°c) Consider (Figure 6) the surface of a two-dimensional 

Figure 5 Growth rate and morphology of crystals obtained from the crystal with a square lattice which grows in the direction 
melt of PE (M, = 50900) according to Lahaig (communicated by y. Impose the solid-on-solid (SOS) restriction: The only 
Labaig, Lotz and Wittman ). The 'dominant 1 10 facets which according 'on '  sites allowed are those in position y where there is 
t o  Hoffrnan and Miller govern the change from regime I to regime II' an existing occupied site at y - 1. There are three kinds 
are not seen of sites, namely sites 0, 1 and 2 according to the number 

of lateral neighbours of the unit. Rate constants Ao, AI, 
A 2 for addition and B o, B z, B 2 for removal may be 

face as a function of v and leads to a situation that is defined, and their ratio depends on the corresponding 
commonly known as the '61 catastrophe '13 changes in free energy. It is clear (Figure 5) that by 

defining the rate constants i and g Frank has also 
In fact, the attachment of the first stem leads to a differentiated the sites 0 from the sites 1. However, 

decrease of the free energy, which becomes larger as the Frank's theory ignores the removal of a unit from a site 2. 
lamellae get thicker. The attachment of the first stem is Removal and addition in such sites are rare events when 
easier than the attachment of further stems, and the basic the situation is a nucleation-controlled growth. 
argument of the Hoffman and Lauritzen zippering model The most important difference between the two models 
is lost. is that in Frank's model the rate of advance of a step is 

(iii) Hoffman and Miller introduce the idea that, 
although the 2 0 0 facets grow on regime II, these faces 
are subordinate to dominant 1 1 0 facets, which in turn 
govern the regime I - I I  transitions as shown by Figure 5, 
drawn from Labaig's data. These hypothetical 1 1 0 [ Sadler [ | 
facets are not seen below the break in the log G versus r 
1~TAT curve nor above this break. , --T-n sos I 

Despite the fact 14 that from the Gargagno Meeting in ' ' ' ' / ~--T-n f - - ' l  I I 

1988 the persistence length was reduced from 1 #m to r -  [ . . . .  [--] L___] I-7 ] - - ' ~  
20nm,  we do not believe that these omnipresent, r -4 - -T- - [  - ~  1 ,  , 
dominant, phantom facets exist (see Appendix 4). From , , i , 
our point of view, these apparent paradoxes may be ruled 
out by discarding the concepts of regime 1 lz and of 
the zippering nuclei 8. There are other approaches to / , %  / , ~ ,  / • z  
the problem of limitation of fold length at high super- I'o-I ~;" [_~ 
cooling7-9. L i 'l 

In conclusion, the various developments given by . /~o . /~,  / ~ z  
Hoffman and Miller do not seem to be consistent. 
Nevertheless this does not make Mansfield's major result _ _ [ o - - ]  ]_LJ [ z j  
any less interesting: 'Despite the fact that the Frank's Additions to 0 
model is intended to describe a nucleation controlled FLuctuations from Sites I 
growth, the Frank's equation may be used to construct Removals from 2 
rough surfaces.' 

[ Vrook ] 

SADLER'S APPROACH / 

The premise that nucleation was the rate-controlling -@]- - - -  g--~_l_j 
factor in kinetic theories was first disputed by Sadler in 

Irreversible Continuous Annihilotion 
1983. He states that in some circumstances poly(ethylene attochment drift 
oxide) crystals have a rounded habit as do polyethylene 
crystals grown from the melt or grown in a solution with 
higher dissolution temperature. Figure 6 Growth of a 2D crystal according to Sadler 6 
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a constant, but in Sadler's model fluctuations will be THE MODEL 
superimposed on a systematic drift of the step. A more 
or less biased random walk of the steps is assumed. On We start from Frank's equations (1) and (2), and to 
the contrary, similarities exist between the models. More account for the possible removal of units from site 0, we 
specifically, Sadler considers in a part of his work the replace i by its mean value ( i ) .  Similarly because in the 
extreme situation where the mean distance between steps, rough surface model, as a consequence of adding and 
the kinetic length L k = (20/i)  1/2 of Frank's model, is removing units in site 1, the positions of the niches 
much larger than the width of the individual stem and fluctuate, we first replace g by its mean value g/p but 
also much larger than the amplitude of the fluctuations only in the convective term. Because this more or less 

biased random walk of the niches leads to an increasingly 
of the position of a niche. In such a situation, simulations large number of encounters between facing steps, a 
show that nuclei form on the surface, which grows modification of the expression of the annihilation term 
systematically outwards, with little probability of total 
removal before they encounter a second nucleus. Thus is required. A second reason to revise this term is that 
Sadler indicates the possibility of a continuous transition we are dealing with crystals of polymer instead of atomic 
from a situation of normal growth of a rough surface to crystals such as those considered in the original model 
a nucleation-controlled growth. This remark of Sadler is of Hillig 3°, Calvert and Uhlman 31 and Frank 5. 
symmetrical with our own conclusion about Mansfield's In the study of the concentration effect in crystalliz- 

ation from solution, Sanchez and Di Marzio 32, Toda 
work: 'When disentangled from other considerations et al. 3a and others have explained in various ways the 
about reptation, persistence length, regime transition, role played by the two cilia or dangling ends of molecules 
zippering up of the molecule, Frank's equations may that result from the encounter of two nuclei. They stressed 
paradoxically produce a rough surface.' the fact that these cilia may nucleate, for instance, another 

layer, and took this into consideration by modifying the 
value of the initiation rate. It may also be envisaged that 
two dangling ends of molecules cooperate in creating two 

NEED FOR A UNIFIED MODEL new steps in the further layer, just when colliding. In this 
case the probability that, if they encounter one another, 

Instead of using, as Hoffman and Miller did, Mansfield's two opposite steps disappear is less than one. It remains, 
result to disparage the Sadler approach, it may be however, that annihilation may be an increasing, and 
possible to construct a unified model that mediates very likely a linearly increasing, function both of the 
between Frank's model and the theory of growth of 2D concentration of left steps and of the concentration of 
crystals disconnected from the consideration of the right steps. We therefore express the annihilation term 
pinning model. To do this, we first have to return to the as 2wlr, where w has the same dimension as a rate of 
experiment and to scrutinize the facts, displacement. Note that w has a value that may depend 

(i) The rounded habit of some poly(ethylene oxide) noticeably on the temperature and on the molecular 
crystals of Kovacs 2a and of methoxy poly(ethylene weight and may differ widely from g/p. 
oxide) of Cheng 29 does not result from thermal rough- Along the same line, we have to discuss what happens 
ening. When grown at the highest practicable tem- when a step reaches the extremity of the substrate. In an 
perature of crystallization, the crystals display polygonal atomic crystal, annihilation of the step is predicted; in a 
shapes, polymer crystal, the dangling end of the attaching 

(ii) An impressive set of experimental data shows that molecule must cooperate with a cilia incoming from the 
polyethylene may grow by a mechanism that ranges con- intersecting facet with a view to lengthening the substrate. 
tinuously from nucleation-controlled growth to normal Another eventuality is that the molecule folds back on 
growth. The isochronous decoration in some six facetted itself and pursues its deposition on the original crystal 
polyethylene crystals 1° and the existence of rectangular facet. In this case a left step is created at the expense of 
200 sectors are interpreted in ref. 22 as proof of a right step or vice versa. This last opportunity may be 
nucleation control. This was also previously demonstrated called a reflection, the reflecting power of the end of the 
by Bassett, Keller and others for lozenge crystals with substrate being 1 or less than 1. 
distinct sectors and with systematically distorted lattices. These considerations open the possibility of using other 
The sectorized crystal of Khoury with curved facet 2°, the boundary conditions than those assumed by Mansfield ~7 
polyethylene crystal with curved edges and decorated by and Frank s. Note the following nuance : in the work of 
paraffinic crystals described by Lotz and Wittman 23, the Mansfield and of Hoffman and Miller 15, the mobility of 
sectorized crystal with curved edges of Organ and the extremities of the substrate, for instance of a 200 
Keller ~9 and the isochronously decorated crystal with facet of PE crystal, is governed from, say, the outside, 
rounded habit grown from hexadecanol by Dosirre 2~ essentially by the movement of the dominant 1 1 0 facets. 
display a high degree of internal regularity. Lanceolated In the present view, this motion is related, at least 
polyethylene crystals grown by Takamizawa 1, Keith 24 partially, to the mode of growth of the 2 00 facet itself. 
and Nagai 25, and those of Bassett in which distinct We return to these points later. 
sectors were identified by diffraction contrast 26, grow at In conclusion, in order to mediate between Frank's 
the borderline of normal growth but have, however, and Gilmer and Sadler's models, we profoundly modify 
internal regularity, the meaning of the physical parameters used in Frank's 

All these facts dictate in an imperative tone what must equations and we stress that various boundary conditions 
be our ultimate goal. Our precise targets are (i) to may be assumed (for instance the condition h < O/P does 
construct equations that generalize Frank's model and not necessarily hold). But we restate, however, the 
include some of the constituent ingredients of the model formally nearly identical system of equations, although 
of normal growth of 2D crystals and (ii) to solve exactly the range of physical interpretation has been extended. 
the just-mentioned restated system of equations. At first sight this may appear deceptive because the 
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only known solutions of Frank's equations are as follows : growth (an already known result) and also to describe 
a certain mode of growth of rough crystals in which the 

(i) The solution given by Frank himself: distance between consecutive niches is only a small 
y = b { log [ cos (2r~kx)] + ~0t } multiple of the width of a single stem (the original Frank's 

model being patently unsuited 5 to describe such a 
We use k and ~ in this expression to draw attention to situation). But the task is not achieved because the 
the fact that, ultimately, the resolution of the problem solutions obtained cannot explain the shape of all the 
implies the resolution of a Klein-Gordon equation. In very common lanceolated crystals, which do not have 
this view, k may be used to design a wavenumber. We measurable or even visible 1 1 0 facets and are definitely 
may use G instead of b~o to underline that co is the growth not elliptic. From Labaig's work and Bassett's investi- 
rate. Note also that k and co are not independent gations, this lanceolated shape is the only one observed 
quantities : to 2 = 2ig - 4/t2k2g 2. From this, it appears when PE crystallizes in the orthorhombic phase from the 
that the amplitude of modes with smaller wavenumbers melt either below and after the break in the log G versus 
increases more rapidly than the others. T curve. Therefore, we have searched for and found all 

(ii) The (from a strict mathematical point of view 
erroneous ) analytical solution given by Mansfield17. the solutions of our system of equations in the framework 

(iii) Mansfield's solutions 18 resulting from computer of its new interpretation. 

simulation. Search for other non-elliptic profiles 
We have now to discuss these solutions and to see if we 

can find other more appropriate and exact solutions. Passing on the mathematical details, we first demon- 
strate that the initial system of equations is equivalent 
to the following system of equations: 

Effect of  the reduction of the probability of  annihilation w p ~t ~ + \ ~ , /  
The logarithmic term that appears in Frank's solution ( ~ 2 b 2 ( ~ ) 2  [ (  "]( ,] t32y (0y']-]2 

may be assumed to be comprised between 0 and a few = 2 i  g _ _ +  g_ g_ + 
negative units. Thus b being smaller than 1 nm and the \ p /  W L \ W / l \ p J  ¢~X 2 \UXX/] 
length of a facet being, for instance, several micrometres, ~y ( ~ )  
Frank's solution describes a very fiat profile. Reduction - b(l + r) 
of the annihilation probability by a factor of, say c, c~t 
increases by a factor c the ordinate scale (or the apparent c~y 
value of b). This increases the curvature of the profile. - b(1 - r) 
For sufficiently large value of c, we can get a curve that t3x 
fits the shape of lanceolated crystals of elongation ratio made up of a non-linear hyperbolic differential equation 
smaller than 4. and two ordinary equations. However, these last two 

equations may be, from a formal point of view, considered 
Effect of  reflecting boundary conditions as the definitions of l and r, and the problem is thus 

We have shown that Mansfield's solution is a good reduced to the resoluton of a single equation. 
approximation of an exact solution of Frank's problem, By an appropriate new choice of variables, this 
but for completely different boundary conditions than equation was further reduced to a linear hyperbolic 
those used by Mansfield himself. If appropriate and equation very similar to a Klein-Gordon equation. Then 
very special reflecting moving boundary conditions are it was shown (S. Alinhac) that this last equation may be 
assumed : solved by the study of a set of integral equations, which 

was finally performed (D. Villers) by numerical analysis 
Y = b l°gl°[(2ig)~/2(t2+ X2/o2)l/2] (see ref. 34). We now discuss the exact solutions for 

where I o is the modified Bessel function of zero order, different values of the physical parameters. 
Then y is an exact solution of Frank's equations. Similar Figure 7 shows the various shapes obtained and 
results are obtained from generalized equations. These displays the successive outlines of the crystal at equal 
changes in the analytical expression of y and of the intervals of time. We see a crystal similar to those 
boundary conditions rehabilitate Mansfield's analytical observed by Khoury 2°, Organ and Keller ~9, Lotz and 
solution (because for large values of x, lo(x)~-  Wittman23 and many others in Figure 7a. Figure 7b shows 
0.398 94228x-~/2eX). A remaining difficulty is that an a fairly lanceolated crystal where the external parts of 
appropriate correlation between the reflecting power of the curved edges are fairly straight, as some crystals of 
the boundaries and their motion must be assumed. Keith 24, many of Labaig 27 and of Nagai 25. All these 
Another apparent paradox is that reflecting boundary results show the predictive ability of our unified approach 
conditions were not used by Mansfield when performing for the description of crystals, the shape of which ranges 
his computer simulations. From our point of view, both from lozenge to lanceolated crystals with very large 
paradoxes are solved by considering that the effect of elongation ratios. We have hit our target. 
local modifications of the values of the densities of steps The influence of the various parameters on crystal 
does not propagate deeply along the profile because the shape merits a long discussion. Some important results, 
kinetic length is much smaller than the length of the explicitly established elsewhere 34, are the following. 
substrate. At this stage, Mansfield's work and our new Lanceolated crystals are obtained solely if the rate h of 
interpretation of the physical parameters involved appear the moving boundaries exceeds the mean rate g/p of the 
as good premises in our task to mediate between Frank's step and if we have reflecting boundaries. For absorbing 
and Sadler's approaches. It appears that the same boundaries, the crystals have the shape of a truncated 
equations may be used to describe a nucleation-controlled lozenge with curved 2 0 0 faces. Appreciable curvature is 
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=50- obtained solely if (2w/i) 1/2 is of the same order of 
magnitude as b. 

Note carefully that our model does not mediate 
between Hoffman, Lauritzen and Miller's views 15 and 
Sadler's pinning theory 7, but that it does mediate between 
Frank's modeP and Gilmer and Sadler's model 6 for 2D 

~ ~  crystal growth when these theories are disentangled from 
so- other very controversial and complicated considerations. 

EPILOGUE 

So, we can forget Bessel functions, partial differential and 
integral equations, all these complicated mathematical 
topics. We can forget serrated faces, reptation, regimes, 

-5o- zippering, lattice strains and all these complicated 
physical topics and look at a lanceolated crystal. 

We have to decide if it grows homothetically (an idea 
of a mathematician because a molecule has a constant 
size and because the persistence length, and all the 
submicroscopic dimensions, does not increase with the 
size of the crystal) or by a motion parallel to the y axis 

-=50 . . . . . . . .  ~ . . . . . . . . .  ~ . . . . . . . . .  , (Figures 8a and 8b) The answer was given recently by 
- 150 - 50  50 150 " 

Bassett et al. 26. Because these lanceolated crystals are 
~oo- bisectorized, it seems very likely that each molecule is 

deposited in a layer roughly parallel to the 200 
crystallographic plane. The second solution seems to be 
the right one. 

We have now to ask why the crystal is larger at x = 0 
50- than at some distance from the crystal centre. If we have 

any common sense, our answer is that near the centre it 
has grown from the beginning for a larger interval of 
time than in any other place. Therefore, the crystal is 
nearly lozenge-shaped and the elongation ratio is roughly 

0 - equal to the cotangent of half the theta angle (Figure 8c). 
If we return to the experimental data, essentially those 

of Labaig 27, we see that this conclusion is qualitatively 
founded but nevertheless not exactly verified. Then we 
look at the unique equation we have stated equivalent 

-50- to those of the generalized Frank's model. As the linear 
size of the crystal increases by a factor of 10, neither 
ay/Ox nor 2igb are modified, but the curvature is divided 
by 10. We may thus write, as Mansfield does implicitly 
and without a convincing physical explanation: 

- I 0 0  . . . . . . .  , . . . . . .  , . . . . . . .  t . . . . . . . . .  ' ~ ~ / ~ 3 Y \ 2  2i/g_\2b 2 (  ) ( ~ ~ ~/g\2/~y\2 
- I 0 0  - 5 0  0 50  I00 = - -  Jr  

, , p /  w \p) \ax) 
lOO-  

and a particular solution of this equation is made up of 
one ellipse with four segments tangent to it (Figure 8d). 
This shape was also found by Toda 35 and presented at 
the 33rd IUPAC Polymer Symposium. 

5o- This is, to the precision of the measurements, the shape 
of many crystals. The experimental shape is obtained by 
solving exactly the master equation, as we do it. The last 
problem is to explain why the solutions do not depend 
greatly on the assumed density of steps at the boundaries 

o- but solely on the motion of these boundaries. This is 
simply because the conditions on l and r relax into few 
persistence lengths, i.e. some tens of nanometres. 

This is all the story. It relies solely on the following: 

-50- (i) Our generalized Frank's model. 
(ii) The bisectorization of lanceolated crystals observed 

by Bassett. 

F i g u r e  7 E x a c t  so lu t i ons  o f  t he  e q u a t i o n s  o f  the  n e w  m o d e l  for  v a r i o u s  
v a l u e s  o f  t he  i n v o l v e d  phys i ca l  p a r a m e t e r s .  T h e  s h a p e s  g iven  in ( b )  

- I 0 0  , ,  , ,  , . . . .  i . . . . . .  i . . . . . . .  r . . . . . . . . .  ~ a n d ( c ) a r e r e s p e c t i v e l y s i m i l a r t o t h o s e o f c r y s t a l s o b t a i n e d b y B a s s e t t  26 
- I 0 0  - 5 0  0 5 0  I00  a n d  N a g a i  25 
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It also relies on this work  in which we scrutinize all 
experimental facts, we make  a new interpretat ion of  
Frank ' s  equat ions disembodied from the sophisticated A P P E N D I X  1 
H o f f m a n - L a u r i t z e n  theory,  and we solve exactly the Because one reviewer (and Mansfield himself) thinks 
single equat ion of  a suitably generalized model,  erroneously that equat ion (14) of Mansfield's paper:7 : 

d~b2 d~bl 
A C K N O W L E D G E M E N T S  u du = g du (14M) 

We gratefully thank J. J. Labaig,  D. C. Bassett, B. Lotz,  expresses the balance between the various causes of  
J. C. Wi t tman  and M. Dosi~re who provided original changes in the density of steps, we give here a detailed 
micrographs  of numerous  crystals. The method  of account  of Mansfield's work.  Mansfield defines the 
resolution of  the K l e i n - G o r d o n  equat ion with special functions 
boundary  condit ions is due to Professor S. Alinhac 40: = (l + r ) / 2  and 40 2 = ( r -  1)/2 

(Orsay)  and is described elsewhere (ref. 34). We are also We first establish that  Frank ' s  equat ions (3) and (4) lead 
indebted to A. Keller and G. Goldbeck  W o o d  (Bristol), to equat ion (14M).  F r o m  equat ions (3) and (4 )we  get" 
G. David  (Orsay)  and P. Spindel (Mons )  for fruitful 
discussions on the subject. The support  of  the F.N.R.S. ~ y / ~ x  = b( l  - r) = -2340 2 
(Belgian Nat ional  Fund  for Scientific Research) is also and 
appreciated, cJy/dt = gb (l + r) = - 2gb401 
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From the identity 02y/Ox Ot = 02y/Ot OX we get (14M) Mansfield intends to demonstrate that they are negligible 
without considering equations (1)and (2)(which express for large times. But, as shown below, first his demon- 
the balance between creation, annihilation and convection stration is invalid and, secondly, numerical calculation 
of steps). Therefore it is incorrect to think that equation at intermediate times makes doubtful the validity of 
(14M) takes these facts into account. Mansfield's theorem itself. Let us examine this point in 

The sum of equations (1) and (2): some detail. In a second step of his calculation (the first 
(OI O I ) ( O r  Or) is described in Appendix 1 ), Mansfield assumes that the 

- 90x  + ~ + 9 ~x = 2i - 4glr effective solution of the problem may be expressed in the 
form : 

is equivalent to equation (13M) of Mansfield: r = [~b 1 (u) - q~2 (u)]/2 + f l  (x + ht) 

Ot / x  = g = - - ' I = [~bl(u ) + ~b2 (u)]/2 +fx(h t  - x) 

or + fz(ht  + x) (20M) 

1 (  d~ul ~ u  ~ ) From this premise, Mansfield demonstrates that taking 
t 9 - u = i - 29(q~ - q~22) into account the full Frank's system of equations, and 

the boundary conditions, he can neglect f l  and f2 in the 
In the first step of his calculation, Mansfield (as he expressions of r and l. Unfortunately, the premise of his 
explicitly states) neglects the transformation terms, which calculation (equations (19M) and (20M)) is wrong, 
constitute the left-hand side of this equation, and this because the exact solution of a particular problem given 
leads to the result expressed by equation (6). In a second here in the second subsection of the 'Results' does not 
step of his calculation he tries (see Appendix 3) to show lead to values of r and l that would be expressed by 
that this oversimplification has no consequences, equations (19M) and (20M) and therefore the demon- 

stration of Mansfield's claim is obsolete. 
APPENDIX 2 The next question is to know if, the demonstration 

Because one reviewer thinks that the rate h appears in being unfounded, Mansfield's theorem itself (that is to 
Mansfield's solution 17 and because his equation (44M) say 'The difference between exact value of y and that 

given by equation (6) varies as the logarithm of t ')  is 
would mislead the reader, we explicitly demonstrate the true or false. We do not know the answer. However, for 
very important equation (6), which expresses that the intermediate time, numerical calculation shows that the 
two 2 0 0 facets of Mansfield's solution are arcs of a single difference between the actual value of y and that given 
ellipse, by equation (6) increases more rapidly with time than 

Consider the equations ( 17M ) and ( 18M ) of Mansfield In (t) and the theorem itself may be presumed wrong even 
at x = 0; these equations give r = l = (i/29) ~/2 and on when h < 9 (the case considered by Mansfield). 
integration of equation (4) : 

y(O, t) = b( 2gi )~/2t 

For x 4= 0, integration of equations (17M) and (18M) APPENDIX 4 
give in the notation of Mansfield y = y ( - ht, t ) + F ( x, t) 
where F(x,  t)isgiven by equation (44M) of Mansfield. The facts are that during the growth, the length of the 

At first sight the right-hand of this equation depends crystal along the b axis increases. As stated in the section 
on h, because y ( - h t ,  t) and F (x, t) both depend on h. on 'The model', when a step reaches an extremity of the 
However, by substitution of the values of y ( -  ht, t) and substrate, the dangling end of the attaching molecule 
F (x, t) by their values, we get equation (6), which gives may cooperate with a cilia incoming from the intersecting 
at x = 0 the expression just found. In this expression the facet in order to lengthen the substrate. If submicroscopic 
additional parameter introduced, h, the rate of motion 1 1 0 'facets' (or even 020 facets or serrated surfaces) 
of the ends of the substrate, does not appear. This is not exist, they also offer the opportunity for attachment of 
a great surprise, because in this part of his work, molecules coming from the solution. If we see nothing, 
Mansfield does not use boundary conditions, we may imagine everything. What is open to criticism is 

the notion of a dominant 1 1 0 facet. As discussed later, 
APPENDIX 3 the curvature of the 200 facets implies that the mean 

distances between nearest nuclei or steps on the 2 0 0 facet 
It is, however, not established that, for long times, the is small. This is an intrinsic property of the 200 facet, 
effects of the boundary conditions are unimportant. First which has nothing to do with the value of h. Briefly 
of all, as demonstrated elsewhere, they are important for speaking, the terms 'dominant facets', 'subsidiary facets' 
a large value of h (h > g) (a case not considered by and the assumption of the existence of 'submicroscopic 
Mansfield). Let us now discuss the case 9 > h. The 1 1 0 facets' may lead to assigning the curvature of the 
boundary conditions have been shown to be unimportant 2 0 0 facet to a sole cause without explicit reference to 
for small times (Mansfield 1 s ). Moreover, in his work 17, the nature of the 2 0 0 facet itself. 
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